The Q Method for the Second-Order Cone Programming
نویسندگان
چکیده
In this paper we present a new algorithm for solving the second order cone programming problems which we call the Q method. This algorithm is an extension of the Q method of Alizadeh Haeberly and Overton for the semidefinite programming problem.
منابع مشابه
Solving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملThe Q method for second order cone programming
We develop the Q method for the Second Order Cone Programming problem. The algorithm is the adaptation of the Q method for semidefinite programming originally developed by Alizadeh, Haeberly and Overton, [3] and [2]. We take advantage of the special algebraic structure associated with second order cone programs to formulate the Q method. Furthermore we prove that our algorithm is globally conve...
متن کاملPrimal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملThe Q Method for Symmetric Cone Programming
The Q method of semidefinite programming, developed by Alizadeh, Haeberly and Overton, is extended to optimization problems over symmetric cones. At each iteration of the Q method, eigenvalues and Jordan frames of decision variables are updated using Newton’s method. We give an interior point and a pure Newton’s method based on the Q method. In another paper, the authors have shown that the Q m...
متن کامل